BalloonSat: To the Edge of Space

Lead: David Snyder (216)433-2217

Goal:

Build, Test, Launch, Track and Recover a payload to 100,000 ft (19 mi, 30.5 km, 0.01 atm)

Opportunity

- Send Payload to almost 20mi.
 - "Poor Man's Space Program".
 - Higher than a model rocket.
- Near Space/Mars Conditions.
 - At 100kft P=10mb.
 - P_{SEALEVEL} ~ 1013mb.
 - Above 99% of Atmosphere.
- Success Oriented Learning Experience.
 - First [BalloonSat] attempt in Ohio
 - What works in other programs?
 - Planning, Testing.

4 June 2003 Flight BOR0306A

http://spacegrant.montana.edu/borealis/Missions/BOR0306A/Pictures/IMGP0097.JPG

Experience

- Western States have active BalloonSat Programs.
 - Montana, Colorado, Arizona
 - College-level payload development.
 - Lower-technology payloads (Teachers/High School)
- NASA GRC works with Wayne State University to develop a Solar Cell Calibration Payload
 - Provides experience with Launch, Tracking & Recovery

Payloads

- Telemetry Module
 - Transmit GPS location/Altitude
- Cameras
- Possible Data, 2 or 3 of
 - Temperature
 - Pressure
 - Solar Cell output
 - Magnetic Field
 - Accelerometer
 - Other

http://spacegrant.montana.edu/borealis/Missions/BOR0306A/Pictures/IMGP0097.JPG

- First Year (demonstration)
 - Keep it Simple.
 - Remote Sensing (Photographs).
 - A few simple measurements
 - Temperature
 - Pressure
 - Solar Cell Output
 - Hands-on Experience
 - Success (flight and recovery) is a very high priority.
 - Planning: Requirements, Specifications, Check Lists.
 - Test to environmental conditions: Pressure, Temperature.

- A Successful year could open opportunities for expanded programs.
 - Sensible Requirements and Specifications.
 - More complicated payloads for future Explorer Posts.
 - Possible Launch Services for College programs.
 - Possible Launch Services for High School Payloads.

- Initial 8 weeks (before Christmas)
 - Background
 - Select Experiments
- Following 10 weeks (start mid-January)
 - Build and test Payloads
- Launch April (Saturday All Day)
 - Plan for April 2
 - Weather Backups April 8, 16
 - 60 to 70 mi West of NASA
 - Est travel: 40 to 60 mi
 - 2 to 3 hr flight
- 3 weeks to analyze and present results

